Design problem: Clock gating for a shift register

Problem: There is an 4-bit shift register with parallel read and write capability as shown in the diagram. We need to find out an opportunity to clock gate the module.

 Mode selection bits ("S1" and "S0") are controlling the operation of this shift register with following settings:

Solution: From the basics of clock gating, we know that if the stae of a flip-flop is not chaging, there lies an opportunity to gate its clock. Observing the table, we see that state of all flip-flops does not change when "S1,S0" are either "00" or "11". So, when mode selection bits are corresponding to these values, we can gate the clock to this shift register. Or, we can say that clock to the module should reach only when (S1 xor S0) is equal to 1.


Can you relate the timing of S1 and S0? Should they be coming from positive edge-triggered flip-flop or negative edge-triggered flip-flop? Clock gating checks explains the timing of clock gating signals with respect to clock.

Also read:




MOS transistor structure

A MOSFET (Metal Oxide Semiconductor Field Effect Transistor), or MOS, as is commonly called, is an electronic device which converts change in input voltage into a change in output current. The basic structure of a MOS transistor (as seen sideways) is as shown in figure 1. The substrate is a lightly doped semiconductor. Source and Drain regions are heavily doped regions of type opposite to substrate. In-between source and drain is a region called channel. Above the channel is a very thin layer of oxide. 

The voltage is applied to input terminal, which is called "Gate" terminal. If sufficient voltage is applied at the gate terminal, a channel gets formed between source and drain terminals. Depending upon the nature of channel formed, MOS is termed as N-MOS or P-MOS.

N-MOS: For an N-MOS, substrate is P-type, source and drain regions are N-type. Application of a positive voltage at Gate terminal with respect to substrate will result in formation of channel of electrons.

P-MOS: For a P-MOS, substrate is N-type, source and drain regions are P-type. Application of a negative voltage at Gate terminal with respect to substrate will result in formation of channel of holes.